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Introduction
• Ocean Worlds Exploration Program

- Search for Extraterrestrial Life
- Ceres, Europa, Enceladus, Pluto
- Challenges: 

§ Extreme operating environmental conditions
§ Break through up to 40 km thick ice

• Robotic Probe
- Small, robust, long-lived electrical energy and heat source
- Traditional nuclear power systems require significant radioactive shielding
- Enriched actinide-based systems: significant fabrication, safety, launch costs

• Cryobot reference1

- Power Density > 1 W/cc
- Total (thermal) power: 8 – 12 kW
- Lifetime: 2-6 years, operating at full power
- Maturity: TRL 6, flight ready in ~10 years

1 B. Hockman, et al., “PRIME: “Probe using Radioisotopes for Icy Moons Exploration” A Comprehensive Cryobot Architecture for Accessing 
Europa's Ocean” Paper_1028536_extended_abstract_90601_0



Mission Context
• Icy World Exploration

- Proposed probe capable of powering 
the probe and a drilling mechanism 
with enough Watt-electric and Watt-
thermal to accomplish its mission

- Heated and/or (ultra) sonic drilling 
mechanism will enable the probe to 
travel through icy crusts

- LCF-driven Fast Fission can provide 
Nuclear Electric Propulsion for 
shorter journey

- Ceres, Europa, Enceladus and Pluto 
are icy world candidates

Europa Cutaway

Enceladus Cutaway

GRC Tunnelbot



• Addressing Icy World 
Conditions

- Icy crust likely exist over a 
pressure range from vacuum to 
possibly over 10 kbar

- Temperature range from 
cryogenic to > 270 ºK

- Various ice phases impact probe 
travel rate and pressure1

- Sub-surface lakes likely2

- With these conditions, variable 
power output is required

https://commons.wikimedia.org/wiki/File:Phase_diagram_of_water.svg

1 B. Journaus, et al., “On the identification of hyperhydrated sodium chloride hydrates, stable at icy moon conditions”, PNAS, (21Feb23)
2 R. Culbert, et al., “Double ridge formation over shallow water sills on Jupiter’s moon Europa”, Nature Communications, 13:2007 (2022)



Robotic Probe Specifications/Options

• Cryobot2

• Europa Tunnelbot1

1 S. Olesobm et al, “Compass Final Report: Europa Tunnelbot”, NASA/TP-2019-220054.
2 B. Hockman, et al., “PRIME: “Probe using Radioisotopes for Icy Moons Exploration” A Comprehensive Cryobot
Architecture for Accessing Europa's Ocean” Paper_1028536_extended_abstract_90601_0



Innovation

• Lattice Confinement Fusion (LCF) Technology

- Develop a non-fissile, compact, scalable nuclear 
energy source sufficient to power and provide heat 
for melting and boring through icy shelves with 
untethered, autonomous probes.

- Possible high Isp (specific impulse) Nuclear Electric 
Propulsion (NEP)

- Future development could go beyond the icy-moon 
mission to a lightweight power source for human & 
robotic missions.

Depiction of the ocean underneath Europa's icy layer 



• Traditional fusion: Heats plasma 10x hotter than center of sun – hard to control
• LCF addresses the pressure, temperature, and containment challenges with fusion

• Heats very few atoms at a time
• Approaches solar fuel density
• Lattice provides containment

How LCF Works

Lattice of atoms Inside the lattice

Lattice electron screening (i.e., cloud 
of electrons make the D look like a 
neutral particle and no repulsion exists)

Cold D Hot d

n*

(+ trigger)

Part A:
Part B: 
A + B + Trigger =

Electron Screening
(increases fusion probability)

High Fuel Density
(billion times more dense than traditional fusion)

Technical Details Simplified

Viable Fusion

Hot He-3

https://www1.grc.nasa.gov/space/science/lattice-confinement-fusion/



Hybrid Fusion-Fast Fission
• Takes advantage of both processes

- Fusion reactions provide the neutrons to 
fission non-fissile material

- Require ~2MeV neutrons to fission Th and 
natural U

- Fusion reactions can provide up to 14.1 MeV 
neutrons

Fusion
Reaction

MeV Occurrence Useful particle 
energy (MeV)

D(d,n)3He 4.00 primary » 50% n=2.45

D(d,p)T 3.25 primary » 50% p=3.00

D(3He,p)a 18.30 secondary p=15.00

D(t,n)a 17.60 secondary n=14.10

T(t,a)2n 11.30 low probability n=1 to 9

3He(3He,a)2p 12.86 low probability p=1 to 10

Fission
Reaction

MeV Occurrence Useful particle 
energy (MeV)

232Th(n,𝜸)f 200 high probability n=1 to 9

232Th(p,𝜸)f 200 some probability p=1 to 10

238U(n,𝜸)f 200 high probability n=1 to 9

238U(p,𝜸)f 200 some probability p=1 to 10



Potential Impact
• Probes for icy moons require unacceptable amounts of 238Pu isotope.

• A small, low-mass, variable power source is needed.

• New hybrid approach yields a variable output power source smaller than 
existing fissile reactors.

• Non-fissile alternative to high-enriched uranium (HEU) or high-assay, low-
enriched uranium (HALEU) core saves uranium enrichment, security and 
launch safety costs.

• Efficient operation with reactor thermal waste heat allows probe to melt and/or 
vibrate through ice shelf.



Takeaways
• Hybrid Fusion-Fast Fission Power system

- No HEU or HALEU necessary
- Built on NASA GRC1 and US Navy research2 published in Phys Rev C and elsewhere
- With scaling, suitable for ice crust penetration and power
- Variable output power possible so probe is throttleable
- Compact system supports small size of the probe

• Recognition of Icy World ice-phase temperature and pressure changes
- Requires power/penetration flexibility
- Possible near-surface ice pools3

• Combined ice melting/ultrasonic penetration
- Takes advantage of skin layer adjacent to probe

1. Pines, et. al., “Nuclear Fusion Reactions in Deuterated Metals”, Phys Rev C., 101, 044609 (2020)
2. Mosier-Boss, et al., “Investigation of Nano-Nuclear Reactions in Condensed Matter”, Defense Threat Reduction Agency,(2016).
3. R. Culbert, et al., “Double ridge formation over shallow water sills on Jupiter’s moon Europa”, Nature Communications, 

13:2007 (2022)



• Thanks to the Cryobot Workshop Organizers for inviting us!

• We’re looking forward to learning more from you as to the changing 
requirements

• While looking forward to increasing the TRL of LCF Fast-Fission
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